wing and soecifications, herein, are the pron-
zhrt‘; gfr lDlgItga! Equsment Cor~oraton and shall not be
reproduced or cop’e - of used in w o'e or in par; ast
the basis for the manufacture or sale of items withou

written permission.

‘ A !
PDP-K Technical Memoranda # 2

Title: Extension of PDP-1ll Instruction Sat
Author (s): Ad vanbde Goor
Index Keys: Instruction Sets

Opcode Space

Modes

Stack Operations
Distribution Keys: K
Revision: Nohe
Obsolete: None

Date: 21 January 1970

2.0

ABSTRACT

Scver 11 methods of extending the PDP-1ll instruction
set are discussed. Coding comparisons are made.
Subject to the trivial weighting scheme used, two
solutions were excluded from further analysis
because of their poor performance. The "multiply/
divide" subsolution as discussed in sections 4.4
and 5.4 was the best performer.

1.0 INTRODUCTION

A more elaborate version of the PDP-11/20 is
considered as a possible candidate for the
PDP-K. It is felt that if the PDP-K is a
member of the PDP-11 family, substantial
gains could be obtained from:

1.1 Upwards Program Compatibility

1.2

For DEC this would mean a lower total
software investment, and new machines
could be introduced more easily as
present PDP-11 software would run on
PDP-K.

For customers this would mean that they
could move to a larger machine without
the direct need for reprogramming.

Peripheral Compatibility

- Only one line of péripheral devices has

to be built. The introductions of a
new machine could be done more easily
for this reason. Any new peripheral
device would be available for the whole
family. ~ o ' ‘

[&)

-3

PROBLEMS IN ADAPTING THE PDP-11 ARCHITECTURE TO

A BIGGER MACHINE

™o important problems of the PDP-ll have to be
solved in order to meet the PDP-K requir ements.

2.1 Limited number of instructions and limited

) amount of opcode space left. For the PDP-K
three more classes of instructions are
considered:

2.1.1 EAE instructions, i.e., rotate/
shift and multiply/divide for
16-bit words.

2.1.2 Dpouble Precision Integer Arithmetic
Instructions. . R S T

2.1.3 Floating Point Arithmetic Instructions. |

2.2 Limited Address Space

The total amount of addressable cors memory
on the PDP-11/20 is 65K (1K = is 1024) bytes,
or 32K 16-bit words. For a big 32-bit
version of the PDP-1l this would only mean
16X 32-bit words could be addressed, which
is certainly not adequate for such a

machine. :

3.0

PURPOSE OF MEMORANDUM

Tha purpose of this memorandum is to examine the
suggested methods of solving the first problems:
extending the basic PDP-11 instruction set. Aan
acceptable solution, subject to several constraints,
will be sought.

3.1

3.2

3.4

Program compatxbzlzty at least on the assembly
language Iavala : :

Simplicity in programming by minimizing the
number of instruction formats and restrictions

imposed on instructions.

Opcode space left for future cxpansioa.

Opcodes of the largest member of the family
have to fit in the added instruction set, thus
minimizing the number of formats, and making
programming easier.)

4.0

POSSIBLE SOLUTIONS

Four possible golutions to the opcode space problem are
shown below. They are followed By a discussion in

4.1

4.2

section 5.0.

Implement new instructions as “pure stack"
instructions (i.e., zero address). Each new:"
instriuction can now be spacified with one
combination out of 216, rThis allows for hundreds
of new instructions. Any binary operation (like
multiply, divide, etc.), would take the two
operands from the top of the stack, and leave the
result on the top of the stack. Register 6
would be used as the implied stack pointer.

Introduce a fiag to indicate that the remainder
of the word containing the flag (note: remainder
can be = 0) and the next word form a new
instruction. Depending on the length of the
flag, two cases exist. « '

4.2.1 Full wWord Flag
Instruction

-~ .,

Word N Word N + 2

>3 L - -

16-Bit ﬁlag New Instruction

4.2.2 partial word Plag

Instryction
\ . ‘ &
Word ? ’ Word N + 2
W “.-W .
Flag New Instruction

The advantage of this technigue is that
the new instructions can have the same
source-destination format as the standard
(i.e., currrent ¥DP-11/20), instructions.

4.3

-6~

The disadvantage is that every new
instruction takes two words. The
partial word flag case offers the
advantage of a greater number of
new instrud¢tions at the expense of
somewhat more complicated hardware.

Modes

A mode iz a (hardware) state of the processor
to allow instructions to be interpreted
differently. Basically two kinds of modes
have to be recognized:

4.3.1 Enter and leave modes only with dedicated
commands (i.e., only switch modes when
an instruction specifies to do so).

4.3.2 Enter modes for a spacified number of
instructions after which the mode is
switched back to the standard mode
automatically.

The advantage ‘of modes is that instructions

in any mode are only 1 word long. The
disadvantage is that special instructions have
to be given to enter, and in the case of 4.3.1,
to leave the mode.

Use Reserved Multiply/Divide Space

These two opcode spaces are not used in the
PDP-11/20. The to-be-added two-operand
instructions can be implemented as source-
destination instructions whare the -stack is
one implied operand, and the second operand
is specified with the full 6-bit destination
field of the instruction. One of these 6
bits can be used as a direction bit such that
operations can have either their source or
destination as the implied stack. This allows
for 32 nnw instructions to be specified.

-]

5.0 EVALUATIOM OF PROPOSED SOLUTIONS

When evaluating the proposed solutions, the implementation
of a 32-bit version of the pPpP-11 should be included. Fer
such a machine, double-precision floating point lnstructsons,
together with EAE instructions, operating on 32-bit
registers ace desirable, (assuming that these instructions
can operate on registers). This means that opcode space

for those instructions has to be reserved to provide for
their efficient coperation.

Simplicity in programming and machine organization dictate
that the number of instruction formats for the three
classes of new instructions, (as discussed in section
2.1), should be minimal. In order to make the extended
instruction set more accaptable, it is very desirable to
make the added instructions fit in currently existing
formats, or add at most a single new format. Sevaral
coding comparisons are done to assist in the evaluation
The five problems below (Pl-P5), are considered
representative. The assumptions made in coding the
problems can be deduced from the listed code in Appendixes
A-D. The variables A, B, C, D and E are considered
single precision floating point (32-bit numbers).

Pl: Ae—pB2C ‘ , /simple case
Pz-,A¢—~—~(B+C)*(D+E) , /temporary variable case
P3: A(i)e—B(i)»C (i) /egubscripted case

P4: A(i)e—B(i+3) =C{ia5) /mixed arithmetic case

PS: A(i,3)e-A(i,j)+B(i,k)*C(k, j) /multi-dimensional
array case

P5 is an example of the inner-loop statement of the
array multiplication: [Rlg—[Bl * [c] 1t is assumed
that the array bounds are declared from o to u. For
array B this would be: Real Array B (0 - bul, 0 - bu2).
The first index of B goes to bul, the second to bu2.

It will be assumed that the indexes are in registers

R:, Rj, and Rk.

Assuming- that the indexes i and j are in register Ri
and Rj, the value B (i,3j) will be address as follows:
Location of B(i,j) = location of B (i.e., starting
location of natrix) + i*bul+y).

5.1 pPure Stack Operations

In order to make the pure stack operations efficient,
one of the opcode spaces reserved for multiply/divide
has to be used for a double move (MOVD' instructions.

MOVD:Move 2 words (32 bite) from S(ouvce) D(estination' .
This instruction is required especiaily in a 22-bit
machine. The one binary opcode spaca left can be
used to implement the EAE instructicns.l frhe .
instruction format would be as follows:

OPERATION DESTINATION
M—'\ M—-_‘
1 3 3 3 6
\.tnw
RFGISTER

This same format is used for the JSR {subroutine call)
instruction. The EAL instructions are made to oporate
on registers only. The regiszer involved is

specifiad by the 3 “register” bits.

The value of the effactive uddres: of the "destination"
determines the number of pisitions to be shifted or
rotated. Becsuse the autc-increment and auto-
decrement modes do not apply to these instructions,
one of the 2 mode bits can be used to specify a

single or combined operation, (i.e., see PDP-10

LSH, LSHC, etc.). The remaining spice can be

used to implement instructions like EXCHANGE,

REPEAT, etc.

Appendix A gives the coding examples for the five
probiema. The handling of multi-dimensional arrays
is very cumbersome because the address computations
have to be done on the stack. introducing a
second set of 16-bit multiply/divide instructions
implemented as the above EAE instructions will
solve this problem at the expens¢ of a more complex
instruction set. Subcolumn Table 1 MPD of Section
6 shows the improvement gained bv this.

lexcept for 16-bit multiply/divide

5.2 Flagged Instructions

The coding examples shown in Apvendix B are the
same for alternatives 4.2.1 and 4.2.2. 4.2.2 1Is
preferable only if the additionazl opcode space is
needed. It is suggested that the EAE multiply/
divide instruction will be implenented in the
space "reserved"” for them. The EAE rotate/shift
instructions have to be implemerted as *flagged”
instructions, the format would Fra similar to that
discussed in section 5.1., excert for the flag.
The double precisicn integer an¢ floating point
instructions would be implemented as full soxr ce~
destination instructions.

5.3 Modes

Before going into detail, proposal 4.3.2 (setting
the modes for a specific number »f instructions
(K)), will be examined. This is considerec less
attractive because of problems arising in a
string of Nl instructions to be sxecuted i: tha
new mode.

5.3.1 Branching in terms of skirping oves a
group of instructions in the speci:iied
string will cause problems because N is
not updated automatically.

5.3.2 Programming will be very difficult because
when branching into a sequance of
instructions their mode, (in which those
operate), will be difficult to determine.

5.3.3 It will be difficult for a compiler to
set up the right "N" because it wiil
require some kind of “look-ahead”.

5.3.4 In case of interrupts/traps, the remainder
of M has to be saved and restored upon
exit of the interrupt/trap service
routine. _

"'Where N is an arbitrary pésitive number.

-10~-

For the reasons above, proposal 4.3.2 will be
dropped, and not considered further.

The extended mode, (which contains the floating,
double-precision integer instructions, etc.},

ig entered by the command Enter Extended Mode
(EEM) . The processor stays in this mode until
the instruction Leave Extended Mode (LEM) is
given.

In regard to 4.3.1, subrocutine calls and
interrrupt/traps cause problems typical for modes
in saving/restoring the mode and entering the
routine (subroutine or interrupt/trap service
routine), in the correct mode. The interrupt/
trap case is the easiest one. The mode. can be
preserved in a dedicated bit in the Central
Processor Status Register (PS). Entering the
interrupt/trap service routine in the right mode
can be done similarly by storing the mode of
that routine in the PS interrupt/trap vector.
The correct mode will then be entered
automatically upon interrupt.

Entering a subroutine in the desired mode in a
program compatible way can be done by taking the
lowest bit (bit 0) of the subroutine address as
the mode bit. In the current PDP-11/20, this

bit has to be equal zero because *the subroutine
address is a word address. By defining a “"0"

in pit 0 of the subroutine addreas as the
standard mode, - program compatibility is preserved.

Saving/restoring the mode upon a subroutine call/
exit is much more difficult. The only hardware
solution found thus far is to store the mode on
the stack in a separate word. The new JSR would
then store 2 words on the stack: the register

to be saved and the mode. Programs making use

of the knowledge that only 1 word gets stored

on the stack by a JSK have to be modified.

A program compatible.software solution to the
mode problem is to have the called subroutine
take care of the mode handling by restoring the
mode (upon exit), which existed prior to the
call of the subroutine. A possible way of doing
thic is by having the existing mede, prior to

. 5.4

-1l

all calls for a given subroutine, fixed, such
that the subroutine only has to match the mode
upon exit to the existing (fixed) mode at call
time.

It is suggested that the multiply and divide
instructions, (operating on 16-bit integers),

‘be implemented in the Space reserved for tham,

and all other instructions be implemented in
the extended mode. : ‘

Appendix C shows the coding examples. They
suggest that an instruction to enter the
extended mode for a single instruction is very
useful. The column EEM1 (Enter Extended Mode
for 1 Instruction), of Table 1, Section 6,
shows this.

Use Mutl iply/Divide Space

One of the two binary opcaode spaces has to be
used to implement the EAE instructions as
described in section 5.1, fThe remaining
instructions have to implemented with the
stack as an implied operand as discussed in
secticn 4.4, Coding examples are given in
Appendix D. They show, like the “pure stack”
case. that handling malti-dimensional arrays
is cumbersome. The improvements made by
adding a set of l6-bit multiply/divide
instructions, as suggested in section 5.1,
are shown in subcolumn MPY of Table 1,
Section 6. N

-12-

6.0 COMPARISON OF PRCPOSED SOLUTIONS

Tablé 1 shows the results of the five problems for the
sevenl] proposed solutions. Four gquantifiers are used
for each problem to measure the quality of the solutions.

6.1 The Number of Instructions

It is quite well known that the probability of
making a programming error increases more than
linear with the number of instructions, (apart
from their complexity), thus a "good"” solution
should have a low number of inatructions.

6.2 The Number of Words<

This is the numbexr of words needed to core the
algorithms given in the appendixes. This is

an important criteriup, especially on a small
machine. For a 32-bit ' machine the numbers have
to be divided by 2.

6.3 The Number of Memory References

The number of memory references both for a 16
and 32-bit machine are included in the tables
because they are important indicators for the
execution times of the algorithms. The
numbers in Table 1 are derived under the
following assumptions:

6.3.1 The stack is supposed to be in coxe-~
memory. (Section 6.4 discusses the
results when this assumption is not
made) .

6.3.2 For the twec operand extended instructions
the arithmetic unit is supposed to behave
as follows: 1) reads both operands into
its internal registers: 2) it performs
the required operation (e.g. FMUL, FADD):
and 3} it stores the results back. In
case of differsnt assumptions the numbers
in the table can de adjusted accordingly.

L d

lrour main solutions, three of which have a subsolution.
2Words are considered to be 16 bits long.

-13~

fox}
FoY

Number of Memory References With A Hardware Stack

The idea is to implement the top Ml words of the
stack in flip-flop registers. From Table 1 it
can be seen that the execution speed increases
for almost all problems and solutions. Those

sclutions making heavy use of the stack gain
most.

Lpor simplicity M is supposed to be such that in none
of the problems the stack "overflows" into core.

TABLE 1 ~ CODING RESULTS OF PROBLEMS Pl + D5
VPRI [PURE sTACK MODE » MULTIPLY/DIVID:
‘L:;;r'azms QUANTIFIER [MPD | FLAG EEMI MPD
1 # of Instructions {4 4 2 4 4 3 3
of Words 7 7 8 8 8 6 6
! # of Memory Ref [25/12.51]25.12.5 | 18/9 18/9 18/9 20/10 20/10
c¢f Memory Ref
With Hardware
| stack 13/6.51 [13/6.5 | 18/9 18/9 18/9 12/6 12/6
b2 # of Instructions |8 8 5 7 7 6 6
» of Words 13 13 17 14 14 11 11 .
of Memory REf 51/25.5 | 51/25.5 43/21.5 40/20 40/20 41/20.5 41/20.5
of Memory Ref
! With Hardware
ctack 23/11.5 {23/11.5 | 35/17.5 | 32/16 32/16 21/10.5 21/10.5
.3 # of Instructions |4 4 2 4 4 3 T3
; # of Words 7 7 8 8 8 6 6
of Memory Ref 25/12.5 | 25/12.5 18/9 18/9 18/9 20/10 20/10
f 2 of Memory Ref : '
: With Herdware .
i Stack 13/6.5 13/6.5 18/9 18/9 18/9 12/6 12/6
'oa #= of Instructions |10 8 6 10 8 8 7
‘ # of Words 15 13 14 16 14 13 12
of Memory Ref 39/22.5 | 31/15.5 24/12 26/13 24/12 31/16.5 26/13
of Memory Ref .
With Hardware
Stack 21/10.5 | 19/9.5 24/12 26/13 24/12 19/9.5 l6/8
t5 # of Instructionsj2l 15 12 18 15 le6 13
£ of Words 28 22 21 24 21 23 20
of Moemorv Ref 74/46 46/23 37/18.5 40/20 37/18.5 55/30.5 40/20
~f vemnory Ref
with Hardwvare
Vo wW,oie a8/14 20/14.5 | 32/16 29/14.% | 31/15.5 YA

-15-

Table 2 gives a rating summary of Table 1, the
rating is from 1 (lowest), to 7 (highest). Wwhen
two solutions have egual rating, they both get
the same number being the average rating when
they would not have been equal.

The problems Pl -~ P3 are very similar in
nature, therefore a summarized rating is given
in the firet part of Table 2. similarly, for
P4 -~ P5 in the second part of Table 2. The
third part of Table 2 is a summary of the
previous two tables assuming equal weights for
the two previous groupe of problems. Part 4
of Table 2 is merely the sum of the first two
quantifiers of the third pa;t.l For a small
machine, the number of <instructions and the
number of words are the most important criteria
for selecting the best solution. On a bigger
machine, execution speed is becoming important.
Part 5 of Table 2 is such an indicator. 1Its
entries are the sums of the first, second, and
fourth quantifiers of part 3. It is assumed
that on the bigger machine the top of the
stack is implemented in hardware.

lAgain here, for simplicity rcasons,‘equal weights are

assumed.

-10-

TABLE 2 - RATING

SUMMARY OF CODING PROBLEMS

g?ﬁﬁ? QUANTIFIER PURE STACK MODE MULTZIPLY/DIVIDE
PROBLEMS ’ MPD FLAG EEMI MPD
1 # of Instructionsi{l.5 1.5 7 3.% 3.5 5.5 5.5
¥l o~ P3 # of Words 4.5 4.5 1 2.5 2.5 6.5 €.5
of Memory Ref 1.5/1.%5 | 1.5/1.5 5/5 6.5/6.5 6.5/6.5 3.5/3.5 3.5/3.%
of Memory Ref
Wwith Hardware
Stack 4.5/4.5({ 4.5/4.5 1/1 2.5/2.5 2.5/2.5% 6.5/6.5 6.5/6.5
2 # of Instructionsil 4.5 7 2 4.5 3 &
P4 - PS # of wWords 1 5 5 2 5 3 2
of Memory Ref {1/1 3/3 6.5/6.5 |[4.5/4.%5] 6.5/6.5 2/2 4.8%/4.8
of Memory Ref »
Wwith Hardware
Stack 2/2 6/6 3.5/3.% |1/1 ¢ 1.5/3.8] 5/5 1/7
3 # of Instructions|2.5 £.0 14 5.9 7.5 8.5 11.%
Pl -~ P& # of Words 5.5 9.5 6 4.5 7.5 9.5 12.8
of Memory Ref [2.5/2.5] 4.5/4.% |[11.5/11.8j11/11 13/13 5.5/5%.8 5/8
of Memory Ref ¢
With Hardware J
Stack 6.5/6.5 10.5/10.5 4.5/4.5% 3.8/3.5 6/6 11.5/11.5 13.%/13.5
4 # of Instructions
+ Number of :
Words 8 15.5% 20 1.0 15.0 i8.0 25
5 # cf Memory Ref
With Hardware
Stack 14.5% 20 24.5 13.5 21.0 29.5 ig.5
i

7.0

~17-

CONCLUSION

Looking at 7able 2, part 4 and 5, it can be consluded
that the supsolutions, (i.e., MPD for "pure stack"” and
"multiply/civide*, and EEM1 for "mcde"), are a big
improvemen: over their “"main" solutions. This,
because »f the improved handling of multi~-dimensional
arrays, :he price paid for this, however, is a more
complex iastruction set {i.e., adding a duplicate

sat of 1l¢-bit multiply/divide instructions to operate
on register or enter the extended mode for a single
instruction) .. :

The mai: solutions “pure stack” and "mode” have the
lowest rating and can therefore be excluded from
furthe: consideration. -

In order to make a definite commitment to any of the
remaining five solutions, more research should be
done in determining the weights of the problems and
weights of the ¢quantifiers.

From the results, this far however, the following
can be said:

7.1 The "mode" subsolution has to look much betterl
in order to be a candidate because of the
mode problems in subroutines. The suggested
hardware solution ig such that the price of
storing the mode on the stack has to be paid
ALWAYS. Also, in programs which do not make
use of the mode, (i.e., all current PDP-11
software). For this reason the suggested
software solution is a better candidate
because there, the price is only paid when
modes are used.

lyhen the proper weights are found.

-18-

The "flag” sQilution is advisable only when it
is expected that the use of tve *flagged”
instructions (i.e. those of class 2.1.2 and
2.1.3 of section 2) is low.

The most promising solution this far is the
"multiply/divide" subsolution. It consistently
scoraed highest or second highest

P2:

P3:

P4:

-19-

APPENDIX A

PURE STACK CODING EXAMPLES

L ——— = 1

i0VD Cc - (SP)
OVD B, - (sSp)
IMUL

vOVD (SP) +,A
Ll (B+C) * (D+E)
M(/D B, -.(Sp)
M{D C, - (SP)
FMD .
MCD D, - (SP)
MO™D E, - (8P
FAD

FN'L -
MC'D (SP) +,A

Al «——p(i)*C(l)

MOV3
MOV)
MU,
MOV)

C(ri), - (sp)
B(Ri), - (sP)

(SP) +, A(Ri)

8{i B (i+3)2xC(in5)

MOV
ADD

MXD

MOV
MOV

IMUL

MOV

MOVD
FMUL
MOVD

Ri, Rs
*3' Rs
B(Rs), - (sP)
Rio haad (39’
#5, - (sP)

(SP)+, Rs
C(Rs), - (SP)

(SP)+, A(RL)

/move C to the stack
/move B to the stack

/floating multiply B#C

/store result in A

/floating add B+C

/£floating add DB
/floating multiply (m;-(a-rc)

/assums index i is in register Ri

/move C(i) to the stack

V/b._i.a a scratch register

/index 14-3' forned

/compute i*% and leave 1 \mx:d result
on top of unck |

/store result

-20-

APPENDIX A (CONT.)

A(i,3) -a A(i,) +B(i,k)*C(k,])

MOV Ri, - (SP)

MOV #bula - (SP)

IMUL

MOV {5P)+, Rs

ADD Rk, Rs /Rs contains index for array B
MOVD B(Rs), - (SP) /put B({i,k) on stack

MOV Rk, - (SP)

IMUL

MOV (SP)+, Rs

ADD Ri, Rs /Rs contains index for array C
MOVD | C(Rs), ~(SP)

FMUL .

MOV Ri, - (SP)

MOV #aul, - (SP)

IMUL ' .

MOV {SP}+, Rs

ADD Rj, Rs /Rs contains index for array C
MOVD A(rRe), - (SP) |

PADD :

MOVD (sp)+, A(Rs) /store result

Pl:

P2:

P3:

P4:.

P5:

APPENDIX B

FLAGGED INSTRUCTIONS CODING EXAMPLES

A «f—————B*(C

MOVD . B,A /move B to A
FMUL C,A .

A @——(B+C)* (D+E)-

MOVD B,A

FADD C.A /A = B+C now

MOVD D,-(SP)

FADD C, (SP) /top of the stack is C+D
FMUL (sP)+,A

A(i) «s@————B{i)=C(i)

MOVD B(Ri), A(Ri) /move B(i) to A(i)
FADD C(Ri}, A(Ri)

All) ag———B(1i+3)2C(in5) /Rs is a scratch register

MOV Ri, Rs ,
ADD #3, Rs /index for B(i+3) computed
MOVD- B(Rs), A(RY)

MOV Ri, Rs

MUL #5, Rs /index for C(is5) computed
FMUL C(Rs), A(RiL) -

A(1,)) @—A(i.3) + B(LX) « C(x, %)

MOV !10 Rs

MUL #bul, Rs o

ADD Rk, Rs . /index for B(i,k) computed
MOVD B(R.)a had (SP)

MOV ‘kn R8s

MUL #cul, Rs

ADD Ri, Rs /index for C(k,j) computed
FMUL C(rRs), (SP) . ,

MOV Ri, Rs

MUL #aul, Rs

ADD Ri., Rs /index for A(i,3j) computed

FADD (sP) +, A(Rs) -

-22-
APPENDIX C

MODE CODING EXAMPLES

pl: A «§————— RBx(C

EEM ' . /enter extended mode

MOVD B,A

FMUL C,A

LEM /leave extended mode
P2: A aff— (B+C) * (D+E)

EEM /enter extended mode

MOVD B,A

FADD C,A

MOVD D,-{SP)

FADD c, (sP)

FMUL {SP)+,A

LEM /leave extended mode

pi: A(i) @B ({i}*C(1i)

EEM

MOVD B(Ri), A(Ri)
FMUL c(ri), A(Ri)
LEM

M: A(i) a@—————B(i4+3) 2C(i®5)

MOV Ri,Rs

ADD #3, Rs

EEM

- MOVD B(Rs), A(Ri)
LEM

MOV Ri, Rs

MUL #5, Rs

EEM

FMUL C(Rs), A(RiY
LEM

Ph: A(i,3) @——A(i,3) + B{i,k) « C(k,3)

MOV ‘Ri, Rs

MUL #bul, Rs .

ADD Rk, Rs. /index for B(i,k) computed
EEM : ,
MOVD B(Rs), - (SP)

LEM b

MOV Rk, Rs

MUL #cul, Rs

ADD Rj, Rs /index for C(k,Jj) computed
EEM :

PHUL c{rg), (8P)

P5

- 3

APPENDIX C

MODE CODING EXAMPLES

cont.

LEM

MoV Ri, Rs

MUL #aul, Rs

ADD Rj, Rs

EEM

FADD (sp) +, A(Rs)

LEM

/index for A(i,j) computed

Pl:

P2:

P3:

P4:

P5:

A <._h_. st e —

MOVD
FMUL
MOVD

A g

MCOVD
FADD
MOVD
FADD
FMUL
MOVD

Ali, ---——

MOVD
FMUL
MOVD

A{i) -

MOV
aDD
MOVD
MOV
IMIIL
MCV
FMUL

MOVD

A{i,]) -g——

MOV
IMUL
MOV
ADD
MOVD
MOV
IMUL
MoV
ADD
FMUL
MCvV
IMUL
Mov
ADD
FADD
MOVD

2xC

R,~{SP)
C, {8P)

(SP)+,A

(B+C) » (D+E)

B,~{(SP)

C, (Sp)

Dl"' (SP)

E, (SP)
(Si)+, (8P)

(GPY+,A

B(i) » C(i)

B{(Ri), - (SP)
C(Rri), (spP)
{SP) +,A(Ri)

B(i#3) + C(i#5)

Ri, Rs

#3, Rs
B(Rs), -(SP)
Ri, -(SP)
25, (SpP)
(SPY+, Rs
C(Rrs), (sP)
(SP)+, A(Ri)

A(i,3) + B(i, k)

Ri, - (SP)
itbul, (5p)
(SPY+, Rs
Rk, Rs
B(RS). - (SP\»
Rk' - (SP)
#cul, (SP)
(SP)+, Rs
Rj, Ps
C(Rs), (sP)
Ri, - (sp)
zaul, (SP)
(SP})+,Rs

Rj,. Rs
A(Rs), (sp)
(SPY+, A(Rs)

’move B to the stack

/multiply C with top of the atva:s

/move result to A

/index i+3 in Rs

/index i*5 in Rs

* Ctk, J)

/index for B(i,X) computed

/index for C(k,3j' computed

Aindex for A(i,j) computed

